A coin is tossed three times. Let $X$ denote the number of times a tail follows a head. If $\mu$ and $\sigma^2$ denote the mean and variance of $X$, then the value of $64\left(\mu+\sigma^2\right)$ is:
Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to :
If an unbiased dice is rolled thrice, then the probability of getting a greater number in the $$i^{\text {th }}$$ roll than the number obtained in the $$(i-1)^{\text {th }}$$ roll, $$i=2,3$$, is equal to
There are three bags $$X, Y$$ and $$Z$$. Bag $$X$$ contains 5 one-rupee coins and 4 five-rupee coins; Bag $$Y$$ contains 4 one-rupee coins and 5 five-rupee coins and Bag $$Z$$ contains 3 one-rupee coins and 6 five-rupee coins. A bag is selected at random and a coin drawn from it at random is found to be a one-rupee coin. Then the probability, that it came from bag $$\mathrm{Y}$$, is :