1
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the mean of the following probability distribution of a radam variable $$\mathrm{X}$$ :

$$\mathrm{X}$$ 0 2 4 6 8
$$\mathrm{P(X)}$$ $$a$$ $$2a$$ $$a+b$$ $$2b$$ $$3b$$

is $$\frac{46}{9}$$, then the variance of the distribution is

A
$$\frac{581}{81}$$
B
$$\frac{566}{81}$$
C
$$\frac{151}{27}$$
D
$$\frac{173}{27}$$
2
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn $$\mathrm{A}$$ is :

A
$$\frac{4}{17}$$
B
$$\frac{5}{16}$$
C
$$\frac{5}{18}$$
D
$$\frac{7}{18}$$
3
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let Ajay will not appear in JEE exam with probability $\mathrm{p}=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $\mathrm{q}=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
A
$\frac{9}{35}$
B
$\frac{3}{35}$
C
$\frac{24}{35}$
D
$\frac{18}{35}$
4
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A bag contains 8 balls, whose colours are either white or black. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is :
A
$\frac{2}{5}$
B
$\frac{2}{7}$
C
$\frac{1}{7}$
D
$\frac{1}{5}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12