Let $$S$$ be the sample space of all five digit numbers. It $$p$$ is the probability that a randomly selected number from $$S$$, is a multiple of 7 but not divisible by 5 , then $$9 p$$ is equal to :
Let $$X$$ be a binomially distributed random variable with mean 4 and variance $$\frac{4}{3}$$. Then, $$54 \,P(X \leq 2)$$ is equal to :
The mean and variance of a binomial distribution are $$\alpha$$ and $$\frac{\alpha}{3}$$ respectively. If $$\mathrm{P}(X=1)=\frac{4}{243}$$, then $$\mathrm{P}(X=4$$ or 5$$)$$ is equal to :
Let $$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$$ be three mutually exclusive events such that $$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2+3 \mathrm{p}}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2-\mathrm{p}}{8}$$ and $$\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1-\mathrm{p}}{2}$$. If the maximum and minimum values of $$\mathrm{p}$$ are $$\mathrm{p}_{1}$$ and $$\mathrm{p}_{2}$$, then $$\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$$ is equal to :