Let $$\mathrm{S} = \{ {w_1},{w_2},......\} $$ be the sample space associated to a random experiment. Let $$P({w_n}) = {{P({w_{n - 1}})} \over 2},n \ge 2$$. Let $$A = \{ 2k + 3l:k,l \in N\} $$ and $$B = \{ {w_n}:n \in A\} $$. Then P(B) is equal to :
Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T-shirts randomly, then the probability that at least 3 players pick the correct T-shirt is :
Let N be the sum of the numbers appeared when two fair dice are rolled and let the probability that $$N-2,\sqrt{3N},N+2$$ are in geometric progression be $$\frac{k}{48}$$. Then the value of k is :
Let M be the maximum value of the product of two positive integers when their sum is 66. Let the sample space $$S = \left\{ {x \in \mathbb{Z}:x(66 - x) \ge {5 \over 9}M} \right\}$$ and the event $$\mathrm{A = \{ x \in S:x\,is\,a\,multiple\,of\,3\}}$$. Then P(A) is equal to :