Let X have a binomial distribution B(n, p) such that the sum and the product of the mean and variance of X are 24 and 128 respectively. If $$P(X>n-3)=\frac{k}{2^{n}}$$, then k is equal to :
A six faced die is biased such that
$$3 \times \mathrm{P}($$a prime number$$)\,=6 \times \mathrm{P}($$a composite number$$)\,=2 \times \mathrm{P}(1)$$.
Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is :
Let $$S$$ be the sample space of all five digit numbers. It $$p$$ is the probability that a randomly selected number from $$S$$, is a multiple of 7 but not divisible by 5 , then $$9 p$$ is equal to :
Let $$X$$ be a binomially distributed random variable with mean 4 and variance $$\frac{4}{3}$$. Then, $$54 \,P(X \leq 2)$$ is equal to :