The coefficients $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ in the quadratic equation $$\mathrm{a} x^2+\mathrm{bx}+\mathrm{c}=0$$ are from the set $$\{1,2,3,4,5,6\}$$. If the probability of this equation having one real root bigger than the other is p, then 216p equals :
The coefficients $$a, b, c$$ in the quadratic equation $$a x^2+b x+c=0$$ are chosen from the set $$\{1,2,3,4,5,6,7,8\}$$. The probability of this equation having repeated roots is :
If the mean of the following probability distribution of a radam variable $$\mathrm{X}$$ :
$$\mathrm{X}$$ | 0 | 2 | 4 | 6 | 8 |
---|---|---|---|---|---|
$$\mathrm{P(X)}$$ | $$a$$ | $$2a$$ | $$a+b$$ | $$2b$$ | $$3b$$ |
is $$\frac{46}{9}$$, then the variance of the distribution is
Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn $$\mathrm{A}$$ is :