1
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let E1 and E2 be two events such that the conditional probabilities $$P({E_1}|{E_2}) = {1 \over 2}$$, $$P({E_2}|{E_1}) = {3 \over 4}$$ and $$P({E_1} \cap {E_2}) = {1 \over 8}$$. Then :

A
$$P({E_1} \cap {E_2}) = P({E_1})\,.\,P({E_2})$$
B
$$P(E{'_1} \cap E{'_2}) = P(E{'_1})\,.\,P(E{_2})$$
C
$$P({E_1} \cap E{'_2}) = P({E_1})\,.\,P({E_2})$$
D
$$P(E{'_1} \cap {E_2}) = P({E_1})\,.\,P({E_2})$$
2
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A random variable X has the following probability distribution :

X 0 1 2 3 4
P(X) k 2k 4k 6k 8k

The value of P(1 < X < 4 | X $$\le$$ 2) is equal to :

A
$${4 \over 7}$$
B
$${2 \over 3}$$
C
$${3 \over 7}$$
D
$${4 \over 5}$$
3
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Bag A contains 2 white, 1 black and 3 red balls and bag B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random, are found to be 1 red and 1 black. If the probability that both balls come from Bag A is $${6 \over {11}}$$, then n is equal to __________.

A
13
B
6
C
4
D
3
4
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

If a random variable X follows the Binomial distribution B(33, p) such that

$$3P(X = 0) = P(X = 1)$$, then the value of $${{P(X = 15)} \over {P(X = 18)}} - {{P(X = 16)} \over {P(X = 17)}}$$ is equal to :

A
1320
B
1088
C
$${{120} \over {1331}}$$
D
$${{1088} \over {1089}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12