1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$X$$ be a binomially distributed random variable with mean 4 and variance $$\frac{4}{3}$$. Then, $$54 \,P(X \leq 2)$$ is equal to :

A
$$\frac{73}{27}$$
B
$$\frac{146}{27}$$
C
$$\frac{146}{81}$$
D
$$\frac{126}{81}$$
2
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The mean and variance of a binomial distribution are $$\alpha$$ and $$\frac{\alpha}{3}$$ respectively. If $$\mathrm{P}(X=1)=\frac{4}{243}$$, then $$\mathrm{P}(X=4$$ or 5$$)$$ is equal to :

A
$$\frac{5}{9}$$
B
$$\frac{64}{81}$$
C
$$\frac{16}{27}$$
D
$$\frac{145}{243}$$
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$$ be three mutually exclusive events such that $$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2+3 \mathrm{p}}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2-\mathrm{p}}{8}$$ and $$\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1-\mathrm{p}}{2}$$. If the maximum and minimum values of $$\mathrm{p}$$ are $$\mathrm{p}_{1}$$ and $$\mathrm{p}_{2}$$, then $$\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$$ is equal to :

A
$$\frac{2}{3}$$
B
$$\frac{5}{3}$$
C
$$\frac{5}{4}$$
D
1
4
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$A$$ and $$B$$ are two events such that $$P(A)=\frac{1}{3}, P(B)=\frac{1}{5}$$ and $$P(A \cup B)=\frac{1}{2}$$, then $$P\left(A \mid B^{\prime}\right)+P\left(B \mid A^{\prime}\right)$$ is equal to :

A
$$\frac{3}{4}$$
B
$$\frac{5}{8}$$
C
$$\frac{5}{4}$$
D
$$\frac{7}{8}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12