1
JEE Main 2022 (Online) 26th July Evening Shift
+4
-1
Out of Syllabus

Let $$X$$ be a binomially distributed random variable with mean 4 and variance $$\frac{4}{3}$$. Then, $$54 \,P(X \leq 2)$$ is equal to :

A
$$\frac{73}{27}$$
B
$$\frac{146}{27}$$
C
$$\frac{146}{81}$$
D
$$\frac{126}{81}$$
2
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1
Out of Syllabus

The mean and variance of a binomial distribution are $$\alpha$$ and $$\frac{\alpha}{3}$$ respectively. If $$\mathrm{P}(X=1)=\frac{4}{243}$$, then $$\mathrm{P}(X=4$$ or 5$$)$$ is equal to :

A
$$\frac{5}{9}$$
B
$$\frac{64}{81}$$
C
$$\frac{16}{27}$$
D
$$\frac{145}{243}$$
3
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1

Let $$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$$ be three mutually exclusive events such that $$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2+3 \mathrm{p}}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2-\mathrm{p}}{8}$$ and $$\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1-\mathrm{p}}{2}$$. If the maximum and minimum values of $$\mathrm{p}$$ are $$\mathrm{p}_{1}$$ and $$\mathrm{p}_{2}$$, then $$\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$$ is equal to :

A
$$\frac{2}{3}$$
B
$$\frac{5}{3}$$
C
$$\frac{5}{4}$$
D
1
4
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1

If $$A$$ and $$B$$ are two events such that $$P(A)=\frac{1}{3}, P(B)=\frac{1}{5}$$ and $$P(A \cup B)=\frac{1}{2}$$, then $$P\left(A \mid B^{\prime}\right)+P\left(B \mid A^{\prime}\right)$$ is equal to :

A
$$\frac{3}{4}$$
B
$$\frac{5}{8}$$
C
$$\frac{5}{4}$$
D
$$\frac{7}{8}$$
EXAM MAP
Medical
NEET