1
JEE Main 2020 (Online) 2nd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of

$${\left( {{{1 + \sin {{2\pi } \over 9} + i\cos {{2\pi } \over 9}} \over {1 + \sin {{2\pi } \over 9} - i\cos {{2\pi } \over 9}}}} \right)^3}$$ is :
A
$${1 \over 2}\left( {\sqrt 3 - i} \right)$$
B
-$${1 \over 2}\left( {\sqrt 3 - i} \right)$$
C
$$ - {1 \over 2}\left( {1 - i\sqrt 3 } \right)$$
D
$${1 \over 2}\left( {1 - i\sqrt 3 } \right)$$
2
JEE Main 2020 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If z be a complex number satisfying |Re(z)| + |Im(z)| = 4, then |z| cannot be :
A
$$\sqrt {10} $$
B
$$\sqrt {7} $$
C
$$\sqrt {{{17} \over 2}} $$
D
$$\sqrt {8} $$
3
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let z be complex number such that
$$\left| {{{z - i} \over {z + 2i}}} \right| = 1$$ and |z| = $${5 \over 2}$$.
Then the value of |z + 3i| is :
A
$$2\sqrt 3 $$
B
$$\sqrt {10} $$
C
$${{15} \over 4}$$
D
$${7 \over 2}$$
4
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the equation, x2 + bx + 45 = 0 (b $$ \in $$ R) has conjugate complex roots and they satisfy |z +1| = 2$$\sqrt {10} $$ , then :
A
b2 – b = 42
B
b2 + b = 12
C
b2 + b = 72
D
b2 – b = 30
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12