1
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Let z be complex number such that
$$\left| {{{z - i} \over {z + 2i}}} \right| = 1$$ and |z| = $${5 \over 2}$$.
Then the value of |z + 3i| is :
A
$$2\sqrt 3 $$
B
$$\sqrt {10} $$
C
$${{15} \over 4}$$
D
$${7 \over 2}$$
2
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
If the equation, x2 + bx + 45 = 0 (b $$ \in $$ R) has conjugate complex roots and they satisfy |z +1| = 2$$\sqrt {10} $$ , then :
A
b2 – b = 42
B
b2 + b = 12
C
b2 + b = 72
D
b2 – b = 30
3
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
If $${{3 + i\sin \theta } \over {4 - i\cos \theta }}$$, $$\theta $$ $$ \in $$ [0, 2$$\theta $$], is a real number, then an argument of
sin$$\theta $$ + icos$$\theta $$ is :
A
$$\pi - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
B
$$ - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
C
$${\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
D
$$\pi - {\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
4
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
If $${\mathop{\rm Re}\nolimits} \left( {{{z - 1} \over {2z + i}}} \right) = 1$$, where z = x + iy, then the point (x, y) lies on a :
A
straight line whose slope is $${3 \over 2}$$
B
straight line whose slope is $$-{2 \over 3}$$
C
circle whose diameter is $${{\sqrt 5 } \over 2}$$
D
circle whose centre is at $$\left( { - {1 \over 2}, - {3 \over 2}} \right)$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12