1
JEE Main 2015 (Offline)
+4
-1
A complex number z is said to be unimodular if $$\,\left| z \right| = 1$$. Suppose $${z_1}$$ and $${z_2}$$ are complex numbers such that $${{{z_1} - 2{z_2}} \over {2 - {z_1}\overline {{z_2}} }}$$ is unimodular and $${z_2}$$ is not unimodular. Then the point $${z_1}$$ lies on a :
A
B
circle of radius $${\sqrt 2 }$$.
C
straight line parallel to x-axis
D
straight line parallel to y-axis.
2
JEE Main 2014 (Offline)
+4
-1
If z is a complex number such that $$\,\left| z \right| \ge 2\,$$, then the minimum value of $$\,\,\left| {z + {1 \over 2}} \right|$$ :
A
is strictly greater that $${{5 \over 2}}$$
B
is strictly greater that $${{3 \over 2}}$$ but less than $${{5 \over 2}}$$
C
is equal to $${{5 \over 2}}$$
D
lie in the interval (1, 2)
3
JEE Main 2013 (Offline)
+4
-1
If z is a complex number of unit modulus and argument $$\theta$$, then arg $$\left( {{{1 + z} \over {1 + \overline z }}} \right)$$ equals :
A
$$- \theta \,\,$$
B
$${\pi \over 2} - \theta \,$$
C
$$\theta \,$$
D
$$\,\pi - \theta \,\,$$
4
AIEEE 2012
+4
-1
If $$z \ne 1$$ and $$\,{{{z^2}} \over {z - 1}}\,$$ is real, then the point represented by the complex number z lies :
A
either on the real axis or a circle passing through the origin.
B
on a circle with centre at the origin
C
either on real axis or on a circle not passing through the origin.
D
on the imaginary axis.
EXAM MAP
Medical
NEET