Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $|z|=1$ with $\arg \left(z_1\right)=\frac{-\pi}{4}, \arg \left(z_2\right)=0$ and $\arg \left(z_3\right)=\frac{\pi}{4}$. If $\left|z_1 \bar{z}_2+z_2 \bar{z}_3+z_3 \bar{z}_1\right|^2=\alpha+\beta \sqrt{2}, \alpha, \beta \in Z$, then the value of $\alpha^2+\beta^2$ is :
Let $$z$$ be a complex number such that the real part of $$\frac{z-2 i}{z+2 i}$$ is zero. Then, the maximum value of $$|z-(6+8 i)|$$ is equal to
The sum of all possible values of $$\theta \in[-\pi, 2 \pi]$$, for which $$\frac{1+i \cos \theta}{1-2 i \cos \theta}$$ is purely imaginary, is equal to :
Let $$z$$ be a complex number such that $$|z+2|=1$$ and $$\operatorname{lm}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$$. Then the value of $$|\operatorname{Re}(\overline{z+2})|$$ is