1
JEE Main 2020 (Online) 9th January Evening Slot
+4
-1
If z be a complex number satisfying |Re(z)| + |Im(z)| = 4, then |z| cannot be :
A
$$\sqrt {10}$$
B
$$\sqrt {7}$$
C
$$\sqrt {{{17} \over 2}}$$
D
$$\sqrt {8}$$
2
JEE Main 2020 (Online) 9th January Morning Slot
+4
-1
Let z be complex number such that
$$\left| {{{z - i} \over {z + 2i}}} \right| = 1$$ and |z| = $${5 \over 2}$$.
Then the value of |z + 3i| is :
A
$$2\sqrt 3$$
B
$$\sqrt {10}$$
C
$${{15} \over 4}$$
D
$${7 \over 2}$$
3
JEE Main 2020 (Online) 8th January Morning Slot
+4
-1
If the equation, x2 + bx + 45 = 0 (b $$\in$$ R) has conjugate complex roots and they satisfy |z +1| = 2$$\sqrt {10}$$ , then :
A
b2 – b = 42
B
b2 + b = 12
C
b2 + b = 72
D
b2 – b = 30
4
JEE Main 2020 (Online) 7th January Evening Slot
+4
-1
If $${{3 + i\sin \theta } \over {4 - i\cos \theta }}$$, $$\theta$$ $$\in$$ [0, 2$$\theta$$], is a real number, then an argument of
sin$$\theta$$ + icos$$\theta$$ is :
A
$$\pi - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
B
$$- {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
C
$${\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
D
$$\pi - {\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
EXAM MAP
Medical
NEET