For all $$z \in C$$ on the curve $$C_{1}:|z|=4$$, let the locus of the point $$z+\frac{1}{z}$$ be the curve $$\mathrm{C}_{2}$$. Then :
For two non-zero complex numbers $$z_{1}$$ and $$z_{2}$$, if $$\operatorname{Re}\left(z_{1} z_{2}\right)=0$$ and $$\operatorname{Re}\left(z_{1}+z_{2}\right)=0$$, then which of the following are possible?
A. $$\operatorname{Im}\left(z_{1}\right)>0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
B. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
C. $$\operatorname{Im}\left(z_{1}\right) > 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
D. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
Choose the correct answer from the options given below :
Let $$z$$ be a complex number such that $$\left| {{{z - 2i} \over {z + i}}} \right| = 2,z \ne - i$$. Then $$z$$ lies on the circle of radius 2 and centre :
Let $$\mathrm{z_1=2+3i}$$ and $$\mathrm{z_2=3+4i}$$. The set $$\mathrm{S = \left\{ {z \in \mathbb{C}:{{\left| {z - {z_1}} \right|}^2} - {{\left| {z - {z_2}} \right|}^2} = {{\left| {{z_1} - {z_2}} \right|}^2}} \right\}}$$ represents a