1
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the locus of z ∈ ℂ, such that Re$ \left( \frac{z - 1}{2z + i} \right) + \text{Re} \left( \frac{\overline{z} - 1}{2\overline{z} - i} \right) = 2 $, is a circle of radius r and center $(a, b)$, then $ \frac{15ab}{r^2} $ is equal to :

A

16

B

24

C

12

D

18

2
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Among the statements

(S1) : The set $\left\{z \in \mathbb{C}-\{-i\}:|z|=1\right.$ and $\frac{z-i}{z+i}$ is purely real $\}$ contains exactly two elements, and

(S2) : The set $\left\{z \in \mathbb{C}-\{-1\}:|z|=1\right.$ and $\frac{z-1}{z+1}$ is purely imaginary $\}$ contains infinitely many elements.

A
both are incorrect
B
both are correct
C
only (S2) is correct
D
only (S1) is correct
3
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the product of $\omega_1=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $\omega_2=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ be $\alpha+i \beta$, $i=\sqrt{-1}$. Let p and q be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $\mathrm{p}+\mathrm{q}$ is equal to :

A
130
B
150
C
160
D
140
4
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$If\,\,{z_1},{z_2},{z_3} \in \,\,are\,\,the\,\,vertices\,\,of\,\,an\,\,equilateral\,\,triangle,\,\,whose\,\,centroid\,\,is\,\,{z_0},\,\,then\,\,\sum\limits_{k = 1}^3 {{{\left( {{z_k} - {z_0}} \right)}^2}\,is\,\,equal\,\,to} $$
A
0
B
1
C
i
D
-i
JEE Main Subjects
EXAM MAP