If the center and radius of the circle $$\left| {{{z - 2} \over {z - 3}}} \right| = 2$$ are respectively $$(\alpha,\beta)$$ and $$\gamma$$, then $$3(\alpha+\beta+\gamma)$$ is equal to :
For all $$z \in C$$ on the curve $$C_{1}:|z|=4$$, let the locus of the point $$z+\frac{1}{z}$$ be the curve $$\mathrm{C}_{2}$$. Then :
For two non-zero complex numbers $$z_{1}$$ and $$z_{2}$$, if $$\operatorname{Re}\left(z_{1} z_{2}\right)=0$$ and $$\operatorname{Re}\left(z_{1}+z_{2}\right)=0$$, then which of the following are possible?
A. $$\operatorname{Im}\left(z_{1}\right)>0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
B. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
C. $$\operatorname{Im}\left(z_{1}\right) > 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
D. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
Choose the correct answer from the options given below :