1
JEE Main 2020 (Online) 3rd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If z1 , z2 are complex numbers such that
Re(z1) = |z1 – 1|, Re(z2) = |z2 – 1| , and
arg(z1 - z2) = $${\pi \over 6}$$, then Im(z1 + z2 ) is equal to :
A
$${{\sqrt 3 } \over 2}$$
B
$${1 \over {\sqrt 3 }}$$
C
$${2 \over {\sqrt 3 }}$$
D
$${2\sqrt 3 }$$
2
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The imaginary part of
$${\left( {3 + 2\sqrt { - 54} } \right)^{{1 \over 2}}} - {\left( {3 - 2\sqrt { - 54} } \right)^{{1 \over 2}}}$$ can be :
A
-2$$\sqrt 6 $$
B
6
C
$$\sqrt 6 $$
D
-$$\sqrt 6 $$
3
JEE Main 2020 (Online) 2nd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of

$${\left( {{{1 + \sin {{2\pi } \over 9} + i\cos {{2\pi } \over 9}} \over {1 + \sin {{2\pi } \over 9} - i\cos {{2\pi } \over 9}}}} \right)^3}$$ is :
A
$${1 \over 2}\left( {\sqrt 3 - i} \right)$$
B
-$${1 \over 2}\left( {\sqrt 3 - i} \right)$$
C
$$ - {1 \over 2}\left( {1 - i\sqrt 3 } \right)$$
D
$${1 \over 2}\left( {1 - i\sqrt 3 } \right)$$
4
JEE Main 2020 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If z be a complex number satisfying |Re(z)| + |Im(z)| = 4, then |z| cannot be :
A
$$\sqrt {10} $$
B
$$\sqrt {7} $$
C
$$\sqrt {{{17} \over 2}} $$
D
$$\sqrt {8} $$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12