1
JEE Main 2023 (Online) 12th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{C}$$ be the circle in the complex plane with centre $$\mathrm{z}_{0}=\frac{1}{2}(1+3 i)$$ and radius $$r=1$$. Let $$\mathrm{z}_{1}=1+\mathrm{i}$$ and the complex number $$z_{2}$$ be outside the circle $$C$$ such that $$\left|z_{1}-z_{0}\right|\left|z_{2}-z_{0}\right|=1$$. If $$z_{0}, z_{1}$$ and $$z_{2}$$ are collinear, then the smaller value of $$\left|z_{2}\right|^{2}$$ is equal to :

A
$$\frac{3}{2}$$
B
$$\frac{5}{2}$$
C
$$\frac{13}{2}$$
D
$$\frac{7}{2}$$
2
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$a \in \mathbb{C}$$, let $$\mathrm{A}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z}) > \operatorname{Im}(\bar{a}+z)\}$$ and $$\mathrm{B}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$$. Then among the two statements :

(S1): If $$\operatorname{Re}(a), \operatorname{Im}(a) > 0$$, then the set A contains all the real numbers

(S2) : If $$\operatorname{Re}(a), \operatorname{Im}(a) < 0$$, then the set B contains all the real numbers,

A
both are false
B
only (S1) is true
C
only (S2) is true
D
both are true
3
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$w_{1}$$ be the point obtained by the rotation of $$z_{1}=5+4 i$$ about the origin through a right angle in the anticlockwise direction, and $$w_{2}$$ be the point obtained by the rotation of $$z_{2}=3+5 i$$ about the origin through a right angle in the clockwise direction. Then the principal argument of $$w_{1}-w_{2}$$ is equal to :

A
$$-\pi+\tan ^{-1} \frac{8}{9}$$
B
$$-\pi+\tan ^{-1} \frac{33}{5}$$
C
$$\pi-\tan ^{-1} \frac{8}{9}$$
D
$$\pi-\tan ^{-1} \frac{33}{5}$$
4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$S = \left\{ {z = x + iy:{{2z - 3i} \over {4z + 2i}}\,\mathrm{is\,a\,real\,number}} \right\}$$. Then which of the following is NOT correct?

A
$$y + {x^2} + {y^2} \ne - {1 \over 4}$$
B
$$(x,y) = \left( {0, - {1 \over 2}} \right)$$
C
$$x = 0$$
D
$$y \in \left( { - \infty , - {1 \over 2}} \right) \cup \left( { - {1 \over 2},\infty } \right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12