1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If $${z^2} + z + 1 = 0$$, where z is complex number, then value of $${\left( {z + {1 \over z}} \right)^2} + {\left( {{z^2} + {1 \over {{z^2}}}} \right)^2} + {\left( {{z^3} + {1 \over {{z^3}}}} \right)^2} + .......... + {\left( {{z^6} + {1 \over {{z^6}}}} \right)^2}$$ is :
A
18
B
54
C
6
D
12
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the cube roots of unity are 1, $$\omega \,,\,{\omega ^2}$$ then the roots of the equation $${(x - 1)^3}$$ + 8 = 0, are :
A
$$ - 1, - 1 + 2\,\,\omega , - 1 - 2\,\,{\omega ^2}$$
B
$$ - 1, - 1, - 1$$
C
$$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
D
$$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $$\,\omega = {z \over {z - {1 \over 3}i}}\,$$ and $$\left| \omega \right| = 1$$, then $$z$$ lies on :
A
an ellipse
B
a circle
C
a straight line
D
a parabola
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $${z_1}$$ and $${z_2}$$ are two non-zero complex numbers such that $$\,\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|$$, then arg $${z_1}$$ - arg $${z_2}$$ is equal to :
A
$${\pi \over 2}\,$$
B
$$ - \pi $$
C
0
D
$${{ - \pi } \over 2}$$
JEE Main Subjects
EXAM MAP