1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If $${z^2} + z + 1 = 0$$, where z is complex number, then value of $${\left( {z + {1 \over z}} \right)^2} + {\left( {{z^2} + {1 \over {{z^2}}}} \right)^2} + {\left( {{z^3} + {1 \over {{z^3}}}} \right)^2} + .......... + {\left( {{z^6} + {1 \over {{z^6}}}} \right)^2}$$ is :
A
18
B
54
C
6
D
12
2
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
The value of $$\sum\limits_{k = 1}^{10} {\left( {\sin {{2k\pi } \over {11}} + i\,\,\cos {{2k\pi } \over {11}}} \right)} $$ is :
A
i
B
1
C
- 1
D
- i
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $$\,\omega = {z \over {z - {1 \over 3}i}}\,$$ and $$\left| \omega \right| = 1$$, then $$z$$ lies on :
A
an ellipse
B
a circle
C
a straight line
D
a parabola
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the cube roots of unity are 1, $$\omega \,,\,{\omega ^2}$$ then the roots of the equation $${(x - 1)^3}$$ + 8 = 0, are :
A
$$ - 1, - 1 + 2\,\,\omega , - 1 - 2\,\,{\omega ^2}$$
B
$$ - 1, - 1, - 1$$
C
$$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
D
$$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12