For $$\mathrm{n} \in \mathbf{N}$$, let $$\mathrm{S}_{\mathrm{n}}=\left\{z \in \mathbf{C}:|z-3+2 i|=\frac{\mathrm{n}}{4}\right\}$$ and $$\mathrm{T}_{\mathrm{n}}=\left\{z \in \mathbf{C}:|z-2+3 i|=\frac{1}{\mathrm{n}}\right\}$$. Then the number of elements in the set $$\left\{n \in \mathbf{N}: S_{n} \cap T_{n}=\phi\right\}$$ is :
The real part of the complex number $${{{{(1 + 2i)}^8}\,.\,{{(1 - 2i)}^2}} \over {(3 + 2i)\,.\,\overline {(4 - 6i)} }}$$ is equal to :
Let arg(z) represent the principal argument of the complex number z. Then, |z| = 3 and arg(z $$-$$ 1) $$-$$ arg(z + 1) = $${\pi \over 4}$$ intersect :
Let $$\alpha$$ and $$\beta$$ be the roots of the equation x2 + (2i $$-$$ 1) = 0. Then, the value of |$$\alpha$$8 + $$\beta$$8| is equal to :