1
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the equation, x2 + bx + 45 = 0 (b $$ \in $$ R) has conjugate complex roots and they satisfy |z +1| = 2$$\sqrt {10} $$ , then :
A
b2 – b = 42
B
b2 + b = 12
C
b2 + b = 72
D
b2 – b = 30
2
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${{3 + i\sin \theta } \over {4 - i\cos \theta }}$$, $$\theta $$ $$ \in $$ [0, 2$$\theta $$], is a real number, then an argument of
sin$$\theta $$ + icos$$\theta $$ is :
A
$$\pi - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
B
$$ - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
C
$${\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
D
$$\pi - {\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
3
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${\mathop{\rm Re}\nolimits} \left( {{{z - 1} \over {2z + i}}} \right) = 1$$, where z = x + iy, then the point (x, y) lies on a :
A
straight line whose slope is $${3 \over 2}$$
B
straight line whose slope is $$-{2 \over 3}$$
C
circle whose diameter is $${{\sqrt 5 } \over 2}$$
D
circle whose centre is at $$\left( { - {1 \over 2}, - {3 \over 2}} \right)$$
4
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let z $$ \in $$ C with Im(z) = 10 and it satisfies $${{2z - n} \over {2z + n}}$$ = 2i - 1 for some natural number n. Then :
A
n = 20 and Re(z) = –10
B
n = 40 and Re(z) = 10
C
n = 40 and Re(z) = –10
D
n = 20 and Re(z) = 10
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12