For $$a \in \mathbb{C}$$, let $$\mathrm{A}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z}) > \operatorname{Im}(\bar{a}+z)\}$$ and $$\mathrm{B}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$$. Then among the two statements :
(S1): If $$\operatorname{Re}(a), \operatorname{Im}(a) > 0$$, then the set A contains all the real numbers
(S2) : If $$\operatorname{Re}(a), \operatorname{Im}(a) < 0$$, then the set B contains all the real numbers,
Let $$w_{1}$$ be the point obtained by the rotation of $$z_{1}=5+4 i$$ about the origin through a right angle in the anticlockwise direction, and $$w_{2}$$ be the point obtained by the rotation of $$z_{2}=3+5 i$$ about the origin through a right angle in the clockwise direction. Then the principal argument of $$w_{1}-w_{2}$$ is equal to :
Let $$S = \left\{ {z = x + iy:{{2z - 3i} \over {4z + 2i}}\,\mathrm{is\,a\,real\,number}} \right\}$$. Then which of the following is NOT correct?
Let the complex number $$z = x + iy$$ be such that $${{2z - 3i} \over {2z + i}}$$ is purely imaginary. If $${x} + {y^2} = 0$$, then $${y^4} + {y^2} - y$$ is equal to :