1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$z$$ and $$\omega $$ are two non-zero complex numbers such that $$\left| {z\omega } \right| = 1$$ and $$Arg(z) - Arg(\omega ) = {\pi \over 2},$$ then $$\,\overline {z\,} \omega $$ is equal to
A
$$- i$$
B
1
C
- 1
D
$$i$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $${Z_1}$$ and $${Z_2}$$ be two roots of the equation $${Z^2} + aZ + b = 0$$, Z being complex. Further , assume that the origin, $${Z_1}$$ and $${Z_2}$$ form an equilateral triangle. Then :
A
$${a^2} = 4b$$
B
$${a^2} = b$$
C
$${a^2} = 2b$$
D
$${a^2} = 3b$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $${\left( {{{1 + i} \over {1 - i}}} \right)^x} = 1$$ then :
A
x = 2n + 1, where n is any positive integer
B
x = 4n , where n is any positive integer
C
x = 2n, where n is any positive integer
D
x = 4n + 1, where n is any positive integer.
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\left| {z - 4} \right| < \left| {z - 2} \right|$$, its solution is given by :
A
$${\mathop{\rm Re}\nolimits} (z) > 0$$
B
$${\mathop{\rm Re}\nolimits} (z) < 0$$
C
$${\mathop{\rm Re}\nolimits} (z) > 3$$
D
$${\mathop{\rm Re}\nolimits} (z) > 2$$
JEE Main Subjects
EXAM MAP