1
AIEEE 2008
+4
-1
STATEMENT - 1 : For every natural number $$n \ge 2,$$ $${1 \over {\sqrt 1 }} + {1 \over {\sqrt 2 }} + ........ + {1 \over {\sqrt n }} > \sqrt n .$$$STATEMENT - 2 : For every natural number $$n \ge 2,$$, $$\sqrt {n\left( {n + 1} \right)} < n + 1.$$$

A
Statement - 1 is false, Statement - 2 is true
B
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for statement - 1
C
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1
D
Statement - 1 is true, Statement - 2 is false
2
AIEEE 2008
+4
-1
The quadratic equations $${x^2} - 6x + a = 0$$ and $${x^2} - cx + 6 = 0$$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is
A
1
B
4
C
3
D
2
3
AIEEE 2007
+4
-1
If the difference between the roots of the equation $${x^2} + ax + 1 = 0$$ is less than $$\sqrt 5 ,$$ then the set of possible values of $$a$$ is
A
$$\left( {3,\infty } \right)$$
B
$$\left( { - \infty , - 3} \right)$$
C
$$\left( { - 3,3} \right)$$
D
$$\left( { - 3,\infty } \right)$$
4
AIEEE 2006
+4
-1
If the roots of the quadratic equation $${x^2} + px + q = 0$$ are $$\tan {30^ \circ }$$ and $$\tan {15^ \circ }$$, respectively, then the value of $$2 + q - p$$ is
A
2
B
3
C
0
D
1
EXAM MAP
Medical
NEET