1
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha, \beta$$ be the roots of the equation $$x^2+2 \sqrt{2} x-1=0$$. The quadratic equation, whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}(\alpha^6+\beta^6)$$, is:

A
$$x^2-180 x+9506=0$$
B
$$x^2-195 x+9506=0$$
C
$$x^2-190 x+9466=0$$
D
$$x^2-195 x+9466=0$$
2
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of all the solutions of the equation $$(8)^{2 x}-16 \cdot(8)^x+48=0$$ is :

A
$$1+\log _8(6)$$
B
$$1+\log _6(8)$$
C
$$\log _8(6)$$
D
$$\log _8(4)$$
3
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha, \beta$$ be the distinct roots of the equation $$x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$$ and $$a_n=\alpha^n+\beta^n$$. Then the minimum value of $$\frac{a_{2023}+a_{2025}}{a_{2024}}$$ is

A
$$-1 / 2$$
B
$$-1 / 4$$
C
$$1 / 4$$
D
$$1 / 2$$
4
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If 2 and 6 are the roots of the equation $$a x^2+b x+1=0$$, then the quadratic equation, whose roots are $$\frac{1}{2 a+b}$$ and $$\frac{1}{6 a+b}$$, is :

A
$$x^2+8 x+12=0$$
B
$$2 x^2+11 x+12=0$$
C
$$4 x^2+14 x+12=0$$
D
$$x^2+10 x+16=0$$
JEE Main Subjects
EXAM MAP