1
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $${S_1} = \left\{ {x \in R - \{ 1,2\} :{{(x + 2)({x^2} + 3x + 5)} \over { - 2 + 3x - {x^2}}} \ge 0} \right\}$$ and $${S_2} = \left\{ {x \in R:{3^{2x}} - {3^{x + 1}} - {3^{x + 2}} + 27 \le 0} \right\}$$. Then, $${S_1} \cup {S_2}$$ is equal to :

A
$$( - \infty , - 2] \cup (1,2)$$
B
$$( - \infty , - 2] \cup [1,2]$$
C
$$( - 2,1] \cup [2,\infty )$$
D
$$( - \infty ,2]$$
2
JEE Main 2022 (Online) 29th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of the function $${\cos ^{ - 1}}\left( {{{2{{\sin }^{ - 1}}\left( {{1 \over {4{x^2} - 1}}} \right)} \over \pi }} \right)$$ is :

A
$$R - \left\{ { - {1 \over 2},{1 \over 2}} \right\}$$
B
$$( - \infty , - 1] \cup [1,\infty ) \cup \{ 0\} $$
C
$$\left( { - \infty ,{{ - 1} \over 2}} \right) \cup \left( {{1 \over 2},\infty } \right) \cup \{ 0\} $$
D
$$\left( { - \infty ,{{ - 1} \over {\sqrt 2 }}} \right] \cup \left[ {{1 \over {\sqrt 2 }},\infty } \right) \cup \{ 0\} $$
3
JEE Main 2022 (Online) 28th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a function f : N $$\to$$ N be defined by

$$f(n) = \left[ {\matrix{ {2n,} & {n = 2,4,6,8,......} \cr {n - 1,} & {n = 3,7,11,15,......} \cr {{{n + 1} \over 2},} & {n = 1,5,9,13,......} \cr } } \right.$$

then, f is

A
one-one but not onto
B
onto but not one-one
C
neither one-one nor onto
D
one-one and onto
4
JEE Main 2022 (Online) 26th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : R $$\to$$ R be defined as f (x) = x $$-$$ 1 and g : R $$-$$ {1, $$-$$1} $$\to$$ R be defined as $$g(x) = {{{x^2}} \over {{x^2} - 1}}$$.

Then the function fog is :

A
one-one but not onto
B
onto but not one-one
C
both one-one and onto
D
neither one-one nor onto
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET