1
JEE Main 2022 (Online) 29th July Morning Shift
+4
-1

If $$\frac{1}{(20-a)(40-a)}+\frac{1}{(40-a)(60-a)}+\ldots+\frac{1}{(180-a)(200-a)}=\frac{1}{256}$$, then the maximum value of $$\mathrm{a}$$ is :

A
198
B
202
C
212
D
218
2
JEE Main 2022 (Online) 28th July Evening Shift
+4
-1

$$\text { Let } S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\} \text { and }$$

$$T=\left\{x \in \mathbb{Z}: x^{2}-7|x|+9 \leq 0\right\} \text {. }$$

Then the number of elements in $$\mathrm{S} \cap \mathrm{T}$$ is :

A
7
B
5
C
4
D
3
3
JEE Main 2022 (Online) 28th July Evening Shift
+4
-1

Let $$\alpha$$, $$\beta$$ be the roots of the equation $$x^{2}-\sqrt{2} x+\sqrt{6}=0$$ and $$\frac{1}{\alpha^{2}}+1, \frac{1}{\beta^{2}}+1$$ be the roots of the equation $$x^{2}+a x+b=0$$. Then the roots of the equation $$x^{2}-(a+b-2) x+(a+b+2)=0$$ are :

A
non-real complex numbers
B
real and both negative
C
real and both positive
D
real and exactly one of them is positive
4
JEE Main 2022 (Online) 27th July Evening Shift
+4
-1

If $$\alpha, \beta$$ are the roots of the equation

$$x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right)x+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0$$,

then the equation, whose roots are $$\alpha+\frac{1}{\beta}$$ and $$\beta+\frac{1}{\alpha}$$, is :

A
$$3 x^{2}-20 x-12=0$$
B
$$3 x^{2}-10 x-4=0$$
C
$$3 x^{2}-10 x+2=0$$
D
$$3 x^{2}-20 x+16=0$$
EXAM MAP
Medical
NEET