If $$\frac{1}{(20-a)(40-a)}+\frac{1}{(40-a)(60-a)}+\ldots+\frac{1}{(180-a)(200-a)}=\frac{1}{256}$$, then the maximum value of $$\mathrm{a}$$ is :
$$
\text { Let } S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\} \text { and } $$
$$T=\left\{x \in \mathbb{Z}: x^{2}-7|x|+9 \leq 0\right\} \text {. }
$$
Then the number of elements in $$\mathrm{S} \cap \mathrm{T}$$ is :
Let $$\alpha$$, $$\beta$$ be the roots of the equation $$x^{2}-\sqrt{2} x+\sqrt{6}=0$$ and $$\frac{1}{\alpha^{2}}+1, \frac{1}{\beta^{2}}+1$$ be the roots of the equation $$x^{2}+a x+b=0$$. Then the roots of the equation $$x^{2}-(a+b-2) x+(a+b+2)=0$$ are :
If $$\alpha, \beta$$ are the roots of the equation
$$ x^{2}-\left(5+3^{\sqrt{\log _{3} 5}}-5^{\sqrt{\log _{5} 3}}\right)x+3\left(3^{\left(\log _{3} 5\right)^{\frac{1}{3}}}-5^{\left(\log _{5} 3\right)^{\frac{2}{3}}}-1\right)=0 $$,
then the equation, whose roots are $$\alpha+\frac{1}{\beta}$$ and $$\beta+\frac{1}{\alpha}$$, is :