1
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The product of all the rational roots of the equation $\left(x^2-9 x+11\right)^2-(x-4)(x-5)=3$, is equal to

A
7
B
21
C
28
D
14
2
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\alpha_\theta$ and $\beta_\theta$ be the distinct roots of $2 x^2+(\cos \theta) x-1=0, \theta \in(0,2 \pi)$. If m and M are the minimum and the maximum values of $\alpha_\theta^4+\beta_\theta^4$, then $16(M+m)$ equals :

A
27
B
17
C
25
D
24
3
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha, \beta ; \alpha>\beta$$, be the roots of the equation $$x^2-\sqrt{2} x-\sqrt{3}=0$$. Let $$\mathrm{P}_n=\alpha^n-\beta^n, n \in \mathrm{N}$$. Then $$(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$$ is equal to

A
$$10 \sqrt{3} \mathrm{P}_9$$
B
$$11 \sqrt{3} \mathrm{P}_9$$
C
$$11 \sqrt{2} \mathrm{P}_9$$
D
$$10 \sqrt{2} \mathrm{P}_9$$
4
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha, \beta$$ be the roots of the equation $$x^2+2 \sqrt{2} x-1=0$$. The quadratic equation, whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}(\alpha^6+\beta^6)$$, is:

A
$$x^2-180 x+9506=0$$
B
$$x^2-195 x+9506=0$$
C
$$x^2-190 x+9466=0$$
D
$$x^2-195 x+9466=0$$
JEE Main Subjects
EXAM MAP