1
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the set of all $a \in \mathbf{R}$, for which the equation $2 x^2+(a-5) x+15=3 a$ has no real root, is the interval ( $\alpha, \beta$ ), and $X=|x \in Z ; \alpha < x < \beta|$, then $\sum\limits_{x \in X} x^2$ is equal to:
A

2139

B

2119

C

2109

D

2129

2
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of solutions of the equation

$ \left( \frac{9}{x} - \frac{9}{\sqrt{x}} + 2 \right) \left( \frac{2}{x} - \frac{7}{\sqrt{x}} + 3 \right) = 0 $ is :

A

3

B

2

C

1

D

4

3
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f: \mathbf{R}-\{0\} \rightarrow(-\infty, 1)$ be a polynomial of degree 2 , satisfying $f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$. If $f(\mathrm{~K})=-2 \mathrm{~K}$, then the sum of squares of all possible values of K is :
A

9

B

1

C

6

D

7

4
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum, of the squares of all the roots of the equation $x^2+|2 x-3|-4=0$, is

A
$6(2-\sqrt{2})$
B
$3(3-\sqrt{2})$
C
$3(2-\sqrt{2})$
D
$6(3-\sqrt{2})$
JEE Main Subjects
EXAM MAP