Consider the equation $x^2+4 x-n=0$, where $n \in[20,100]$ is a natural number. Then the number of all distinct values of $n$, for which the given equation has integral roots, is equal to
Let the equation $x(x+2)(12-k)=2$ have equal roots. Then the distance of the point $\left(k, \frac{k}{2}\right)$ from the line $3 x+4 y+5=0$ is
Let $\alpha$ and $\beta$ be the roots of $x^2+\sqrt{3} x-16=0$, and $\gamma$ and $\delta$ be the roots of $x^2+3 x-1=0$. If $P_n=$ $\alpha^n+\beta^n$ and $Q_n=\gamma^n+\hat{o}^n$, then $\frac{P_{25}+\sqrt{3} P_{24}}{2 P_{23}}+\frac{Q_{25}-Q_{23}}{Q_{24}}$ is equal to
Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$. If $\mathrm{P}_{10}=123, \mathrm{P}_9=76, \mathrm{P}_8=47$ and $\mathrm{P}_1=1$, then the quadratic equation having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is :