Let $\alpha_\theta$ and $\beta_\theta$ be the distinct roots of $2 x^2+(\cos \theta) x-1=0, \theta \in(0,2 \pi)$. If m and M are the minimum and the maximum values of $\alpha_\theta^4+\beta_\theta^4$, then $16(M+m)$ equals :
Let $$\alpha, \beta ; \alpha>\beta$$, be the roots of the equation $$x^2-\sqrt{2} x-\sqrt{3}=0$$. Let $$\mathrm{P}_n=\alpha^n-\beta^n, n \in \mathrm{N}$$. Then $$(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$$ is equal to
Let $$\alpha, \beta$$ be the roots of the equation $$x^2+2 \sqrt{2} x-1=0$$. The quadratic equation, whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}(\alpha^6+\beta^6)$$, is:
The sum of all the solutions of the equation $$(8)^{2 x}-16 \cdot(8)^x+48=0$$ is :