If the set $$R=\{(a, b): a+5 b=42, a, b \in \mathbb{N}\}$$ has $$m$$ elements and $$\sum_\limits{n=1}^m\left(1-i^{n !}\right)=x+i y$$, where $$i=\sqrt{-1}$$, then the value of $$m+x+y$$ is
If $$z_1, z_2$$ are two distinct complex number such that $$\left|\frac{z_1-2 z_2}{\frac{1}{2}-z_1 \bar{z}_2}\right|=2$$, then
Let $$S_1=\{z \in \mathbf{C}:|z| \leq 5\}, S_2=\left\{z \in \mathbf{C}: \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$$ and $$S_3=\{z \in \mathbf{C}: \operatorname{Re}(z) \geq 0\}$$. Then the area of the region $$S_1 \cap S_2 \cap S_3$$ is :
Consider the following two statements :
Statement I: For any two non-zero complex numbers $$z_1, z_2,(|z_1|+|z_2|)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right) \text {, and }$$
Statement II : If $$x, y, z$$ are three distinct complex numbers and $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ are three positive real numbers such that $$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$$, then $$\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$$.
Between the above two statements,