Let $$\Omega$$ be the sample space and $$\mathrm{A \subseteq \Omega}$$ be an event.
Given below are two statements :
(S1) : If P(A) = 0, then A = $$\phi$$
(S2) : If P(A) = 1, then A = $$\Omega$$
Then :
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is :
Let $$S=\{1,2,3, \ldots, 2022\}$$. Then the probability, that a randomly chosen number n from the set S such that $$\mathrm{HCF}\,(\mathrm{n}, 2022)=1$$, is :
Let $$\mathrm{A}$$ and $$\mathrm{B}$$ be two events such that $$P(B \mid A)=\frac{2}{5}, P(A \mid B)=\frac{1}{7}$$ and $$P(A \cap B)=\frac{1}{9} \cdot$$ Consider
(S1) $$P\left(A^{\prime} \cup B\right)=\frac{5}{6}$$,
(S2) $$P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{18}$$
Then :