1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The sum of the first n terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + ....\,is\,{{n{{(n + 1)}^2}} \over 2}$$ when n is even. When n is odd the sum is
A
$${\left[ {{{n(n + 1)} \over 2}} \right]^2}$$
B
$${{{n^2}(n + 1)} \over 2}$$
C
$${{n{{(n + 1)}^2}} \over 4}$$
D
$$\,{{3n(n + 1)} \over 2}$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The sum of series $${1 \over {2\,!}} + {1 \over {4\,!}} + {1 \over {6\,!}} + ........$$ is
A
$${{\left( {{e^2} - 2} \right)} \over e}\,$$
B
$${{{{\left( {e - 1} \right)}^2}} \over {2e}}$$
C
$${{\left( {{e^2} - 1} \right)} \over {2e}}\,$$
D
$${{\left( {{e^2} - 1} \right)} \over 2}$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The sum of the serier $${1 \over {1.2}} - {1 \over {2.3}} + {1 \over {3.4}}..............$$ up to $$\infty $$ is equal to
A
$$\log {\,_e}\left( {{4 \over e}} \right)\,\,$$
B
$$2\,\log {\,_e}2$$
C
$$\log {\,_e}2 - 1\,$$
D
$$\log {\,_e}2$$
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
l, m, n are the $${p^{th}}$$, $${q^{th}}$$ and $${r^{th}}$$ term of a G.P all positive, $$then\,\left| {\matrix{ {\log \,l} & p & 1 \cr {\log \,m} & q & 1 \cr {\log \,n} & r & 1 \cr } } \right|\,equals$$
A
- 1
B
2
C
1
D
0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12