1
AIEEE 2006
+4
-1
Let $${a_1}$$, $${a_2}$$, $${a_3}$$.....be terms on A.P. If $${{{a_1} + {a_2} + .....{a_p}} \over {{a_1} + {a_2} + .....{a_q}}} = {{{p^2}} \over {{q^2}}},\,p \ne q,\,then\,{{{a_6}} \over {{a_{21}}}}\,$$ equals
A
$${{41} \over {11}}$$
B
$${7 \over 2}$$
C
$${2 \over 7}$$
D
$${{11} \over {41}}$$
2
AIEEE 2005
+4
-1
If $$x = \sum\limits_{n = 0}^\infty {{a^n},\,\,y = \sum\limits_{n = 0}^\infty {{b^n},\,\,z = \sum\limits_{n = 0}^\infty {{c^n},} } } \,\,$$ where a, b, c are in A.P and $$\,\left| a \right| < 1,\,\left| b \right| < 1,\,\left| c \right| < 1$$ then x, y, z are in
A
G.P.
B
A.P.
C
Arithmetic-Geometric Progression
D
H.P.
3
AIEEE 2005
+4
-1
Out of Syllabus
The sum of the series $$1 + {1 \over {4.2!}} + {1 \over {16.4!}} + {1 \over {64.6!}} + .......$$ ad inf. is
A
$${{e - 1} \over {\sqrt e }}\,$$
B
$${{e + 1} \over {\sqrt e }}$$
C
$${{e - 1} \over {2\sqrt e }}$$
D
$${{e + 1} \over {2\sqrt e }}$$
4
AIEEE 2004
+4
-1
Let $${{T_r}}$$ be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, $$m \ne n,\,\,{T_m} = {1 \over n}\,\,and\,{T_n} = {1 \over m},\,$$ then a - d equals
A
$${1 \over m} + {1 \over n}$$
B
1
C
$${1 \over {m\,n}}$$
D
0
EXAM MAP
Medical
NEET