1
AIEEE 2007
+4
-1
Out of Syllabus
The sum of series $${1 \over {2!}} - {1 \over {3!}} + {1 \over {4!}} - .......$$ upto infinity is
A
$${e^{ - {1 \over 2}}}$$
B
$${e^{ + {1 \over 2}}}$$
C
$${e^{ - 2}}$$
D
$${e^{ - 1}}$$
2
AIEEE 2007
+4
-1
In a geometric progression consisting of positive terms, each term equals the sum of the next two terns. Then the common ratio of its progression is equals
A
$${\sqrt 5 }$$
B
$$\,{1 \over 2}\left( {\sqrt 5 - 1} \right)$$
C
$${1 \over 2}\left( {1 - \sqrt 5 } \right)$$
D
$${1 \over 2}\sqrt 5$$.
3
AIEEE 2006
+4
-1
If $${{a_1},{a_2},....{a_n}}$$ are in H.P., then the expression $${{a_1}\,{a_2} + \,{a_2}\,{a_3}\, + .... + {a_{n - 1}}\,{a_n}}$$ is equal to
A
$$n({a_1}\, - {a_n})$$
B
$$(n - 1)({a_1}\, - {a_n})$$
C
$$n{a_1}{a_n}$$
D
$$(n - 1)\,\,{a_1}{a_n}$$
4
AIEEE 2006
+4
-1
Let $${a_1}$$, $${a_2}$$, $${a_3}$$.....be terms on A.P. If $${{{a_1} + {a_2} + .....{a_p}} \over {{a_1} + {a_2} + .....{a_q}}} = {{{p^2}} \over {{q^2}}},\,p \ne q,\,then\,{{{a_6}} \over {{a_{21}}}}\,$$ equals
A
$${{41} \over {11}}$$
B
$${7 \over 2}$$
C
$${2 \over 7}$$
D
$${{11} \over {41}}$$
EXAM MAP
Medical
NEET