A man saves ₹ 200 in each of the first three months of his service. In each of the subsequent months his saving increases by ₹ 40 more than the saving of immediately previous month. His total saving from the start of service will be ₹ 11040 after
A person is to count 4500 currency notes. Let $${a_n}$$ denote the number of notes he counts in the $${n^{th}}$$ minute. If $${a_1}$$ = $${a_2}$$ = ....= $${a_{10}}$$= 150 and $${a_{10}}$$, $${a_{11}}$$,.... are in an AP with common difference - 2, then the time taken by him to count all notes is
A
34 minutes
B
125 minutes
C
135 minutes
D
24 minutes
Explanation
Till $$10$$th minute number of counted notes $$ = 1500$$
The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is
A
- 4
B
- 12
C
12
D
4
Explanation
As per question,
$$\,\,\,\,\,\,\,\,\,\,\,\,a + ar = 12\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$