Let $$< a_{\mathrm{n}} > $$ be a sequence such that $$a_{1}+a_{2}+\ldots+a_{n}=\frac{n^{2}+3 n}{(n+1)(n+2)}$$. If $$28 \sum_\limits{k=1}^{10} \frac{1}{a_{k}}=p_{1} p_{2} p_{3} \ldots p_{m}$$, where $$\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots ., \mathrm{p}_{\mathrm{m}}$$ are the first $$\mathrm{m}$$ prime numbers, then $$\mathrm{m}$$ is equal to
Let $$a, b, c$$ and $$d$$ be positive real numbers such that $$a+b+c+d=11$$. If the maximum value of $$a^{5} b^{3} c^{2} d$$ is $$3750 \beta$$, then the value of $$\beta$$ is
Let $$x_{1}, x_{2}, \ldots, x_{100}$$ be in an arithmetic progression, with $$x_{1}=2$$ and their mean equal to 200 . If $$y_{i}=i\left(x_{i}-i\right), 1 \leq i \leq 100$$, then the mean of $$y_{1}, y_{2}, \ldots, y_{100}$$ is :
If $$\mathrm{S}_{n}=4+11+21+34+50+\ldots$$ to $$n$$ terms, then $$\frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_{9}\right)$$ is equal to :