1
JEE Main 2023 (Online) 12th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$< a_{\mathrm{n}} > $$ be a sequence such that $$a_{1}+a_{2}+\ldots+a_{n}=\frac{n^{2}+3 n}{(n+1)(n+2)}$$. If $$28 \sum_\limits{k=1}^{10} \frac{1}{a_{k}}=p_{1} p_{2} p_{3} \ldots p_{m}$$, where $$\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots ., \mathrm{p}_{\mathrm{m}}$$ are the first $$\mathrm{m}$$ prime numbers, then $$\mathrm{m}$$ is equal to

A
5
B
7
C
6
D
8
2
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$a, b, c$$ and $$d$$ be positive real numbers such that $$a+b+c+d=11$$. If the maximum value of $$a^{5} b^{3} c^{2} d$$ is $$3750 \beta$$, then the value of $$\beta$$ is

A
110
B
108
C
90
D
55
3
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$x_{1}, x_{2}, \ldots, x_{100}$$ be in an arithmetic progression, with $$x_{1}=2$$ and their mean equal to 200 . If $$y_{i}=i\left(x_{i}-i\right), 1 \leq i \leq 100$$, then the mean of $$y_{1}, y_{2}, \ldots, y_{100}$$ is :

A
10051.50
B
10049.50
C
10100
D
10101.50
4
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

If $$\mathrm{S}_{n}=4+11+21+34+50+\ldots$$ to $$n$$ terms, then $$\frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_{9}\right)$$ is equal to :

A
227
B
226
C
220
D
223
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12