The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is
A
- 4
B
- 12
C
12
D
4
Explanation
As per question,
$$\,\,\,\,\,\,\,\,\,\,\,\,a + ar = 12\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$
In a geometric progression consisting of positive terms, each term equals the sum of the next two terns. Then the common ratio of its progression is equals
A
$${\sqrt 5 }$$
B
$$\,{1 \over 2}\left( {\sqrt 5 - 1} \right)$$
C
$${1 \over 2}\left( {1 - \sqrt 5 } \right)$$
D
$${1 \over 2}\sqrt 5 $$.
Explanation
Let the series $$a,ar,$$ $$a{r^2},........$$ are in geometric progression.