1
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
For positive integers $n$, if $4 a_n=\left(n^2+5 n+6\right)$ and $S_n=\sum\limits_{k=1}^n\left(\frac{1}{a_k}\right)$, then the value of $507 S_{2025}$ is :
A

540

B

675

C

1350

D

135

2
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\left\langle a_{\mathrm{n}}\right\rangle$ be a sequence such that $a_0=0, a_1=\frac{1}{2}$ and $2 a_{\mathrm{n}+2}=5 a_{\mathrm{n}+1}-3 a_{\mathrm{n}}, \mathrm{n}=0,1,2,3, \ldots$. Then $\sum\limits_{k=1}^{100} a_k$ is equal to

A
$3 a_{100}+100$
B
$3 a_{100}-100$
C
$3 a_{99}-100$
D
$3 a_{99}+100$
3
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{T}_{\mathrm{r}}$ be the $\mathrm{r}^{\text {th }}$ term of an A.P. If for some $\mathrm{m}, \mathrm{T}_{\mathrm{m}}=\frac{1}{25}, \mathrm{~T}_{25}=\frac{1}{20}$, and $20 \sum\limits_{\mathrm{r}=1}^{25} \mathrm{~T}_{\mathrm{r}}=13$, then $5 \mathrm{~m} \sum\limits_{\mathrm{r}=\mathrm{m}}^{2 \mathrm{~m}} \mathrm{~T}_{\mathrm{r}}$ is equal to

A
98
B
126
C
112
D
142
4
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In an arithmetic progression, if $\mathrm{S}_{40}=1030$ and $\mathrm{S}_{12}=57$, then $\mathrm{S}_{30}-\mathrm{S}_{10}$ is equal to :

A
525
B
505
C
510
D
515
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12