1
JEE Main 2016 (Offline)
+4
-1
If the $${2^{nd}},{5^{th}}\,and\,{9^{th}}$$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is :
A
1
B
$${7 \over 4}$$
C
$${8 \over 5}$$
D
$${4 \over 3}$$
2
JEE Main 2016 (Offline)
+4
-1
Out of Syllabus
If the sum of the first ten terms of the series $${\left( {1{3 \over 5}} \right)^2} + {\left( {2{2 \over 5}} \right)^2} + {\left( {3{1 \over 5}} \right)^2} + {4^2} + {\left( {4{4 \over 5}} \right)^2} + .......is\,{{16} \over 5}m,$$ then m is equal to :
A
100
B
99
C
102
D
101
3
JEE Main 2015 (Offline)
+4
-1
Out of Syllabus
The sum of first 9 terms of the series.

$${{{1^3}} \over 1} + {{{1^3} + {2^3}} \over {1 + 3}} + {{{1^3} + {2^3} + {3^3}} \over {1 + 3 + 5}} + ......$$
A
142
B
192
C
71
D
96
4
JEE Main 2015 (Offline)
+4
-1
If m is the A.M. of two distinct real numbers l and n $$(l,n > 1)$$ and $${G_1},{G_2}$$ and $${G_3}$$ are three geometric means between $$l$$ and n, then $$G_1^4\, + 2G_2^4\, + G_3^4$$ equals:
A
$$4\,lm{n^2}$$
B
$$4\,{l^2}{m^2}{n^2}$$
C
$$4\,{l^2}m\,n$$
D
$$4\,l\,{m^2}n$$
EXAM MAP
Medical
NEET