If $${(10)^9} + 2{(11)^1}\,({10^8}) + 3{(11)^2}\,{(10)^7} + ......... + 10{(11)^9} = k{(10)^9},$$, then k is equal to :
CHECK ANSWER
Explanation Let $${10^9} + 2.\left( {11} \right){\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ...$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$$
Let $$x = {10^9} + 2.\left( {11} \right){\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ..... + 10{\left( {11} \right)^9}$$
Multiplied by $${{11} \over {10}}$$ on both the sides
$${{11} \over {10}}x = {11.10^8} + 2.{\left( {11} \right)^2}.{\left( {10} \right)^7} + .....$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 9\left( {11} \right){}^9 + {11^{10}}$$
$$x\left( {1 - {{11} \over {10}}} \right) = {10^9} + 11{\left( {10} \right)^8} + 11{}^2 \times {\left( {10} \right)^7}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ... + {11^9} - {11^{10}}$$
$$ \Rightarrow - {x \over {10}} = {10^9}\left[ {{{{{\left( {{{11} \over {10}}} \right)}^{10}} - 1} \over {{{11} \over {10}} - 1}}} \right] - {11^{10}}$$
$$ \Rightarrow - {x \over {10}} = \left( {{{11}^{10}} - {{10}^{10}}} \right) - {11^{10}} = - {10^{10}}$$
$$ \Rightarrow x = {10^{11}} = k{.10^9}$$
Given $$ \Rightarrow k = 100$$