1
JEE Main 2022 (Online) 27th June Morning Shift
+4
-1

$$x = \sum\limits_{n = 0}^\infty {{a^n},y = \sum\limits_{n = 0}^\infty {{b^n},z = \sum\limits_{n = 0}^\infty {{c^n}} } }$$, where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1, abc $$\ne$$ 0, then :

A
x, y, z are in A.P.
B
x, y, z are in G.P.
C
$${1 \over x}$$, $${1 \over y}$$, $${1 \over z}$$ are in A.P.
D
$${1 \over x}$$ + $${1 \over y}$$ + $${1 \over z}$$ = 1 $$-$$ (a + b + c)
2
JEE Main 2022 (Online) 26th June Evening Shift
+4
-1
Out of Syllabus

If $$A = \sum\limits_{n = 1}^\infty {{1 \over {{{\left( {3 + {{( - 1)}^n}} \right)}^n}}}}$$ and $$B = \sum\limits_{n = 1}^\infty {{{{{( - 1)}^n}} \over {{{\left( {3 + {{( - 1)}^n}} \right)}^n}}}}$$, then $${A \over B}$$ is equal to :

A
$${{11} \over 9}$$
B
1
C
$$-$$$${{11} \over 9}$$
D
$$-$$$${{11} \over 3}$$
3
JEE Main 2022 (Online) 25th June Evening Shift
+4
-1
Out of Syllabus

The sum 1 + 2 . 3 + 3 . 32 + ......... + 10 . 39 is equal to :

A
$${{2\,.\,{3^{12}} + 10} \over 4}$$
B
$${{19\,.\,{3^{10}} + 1} \over 4}$$
C
$$5\,.\,{3^{10}} - 2$$
D
$${{9\,.\,{3^{10}} + 1} \over 2}$$
4
JEE Main 2022 (Online) 24th June Evening Shift
+4
-1

Let x, y > 0. If x3y2 = 215, then the least value of 3x + 2y is

A
30
B
32
C
36
D
40
EXAM MAP
Medical
NEET