1
AIEEE 2008
+4
-1
The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is
A
- 4
B
- 12
C
12
D
4
2
AIEEE 2007
+4
-1
Out of Syllabus
The sum of series $${1 \over {2!}} - {1 \over {3!}} + {1 \over {4!}} - .......$$ upto infinity is
A
$${e^{ - {1 \over 2}}}$$
B
$${e^{ + {1 \over 2}}}$$
C
$${e^{ - 2}}$$
D
$${e^{ - 1}}$$
3
AIEEE 2007
+4
-1
In a geometric progression consisting of positive terms, each term equals the sum of the next two terns. Then the common ratio of its progression is equals
A
$${\sqrt 5 }$$
B
$$\,{1 \over 2}\left( {\sqrt 5 - 1} \right)$$
C
$${1 \over 2}\left( {1 - \sqrt 5 } \right)$$
D
$${1 \over 2}\sqrt 5$$.
4
AIEEE 2006
+4
-1
If $${{a_1},{a_2},....{a_n}}$$ are in H.P., then the expression $${{a_1}\,{a_2} + \,{a_2}\,{a_3}\, + .... + {a_{n - 1}}\,{a_n}}$$ is equal to
A
$$n({a_1}\, - {a_n})$$
B
$$(n - 1)({a_1}\, - {a_n})$$
C
$$n{a_1}{a_n}$$
D
$$(n - 1)\,\,{a_1}{a_n}$$
EXAM MAP
Medical
NEET