If $$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}=m$$ and $$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{99 \cdot 100}=\mathrm{n}$$, then the point $$(\mathrm{m}, \mathrm{n})$$ lies on the line
The value of $$\frac{1 \times 2^2+2 \times 3^2+\ldots+100 \times(101)^2}{1^2 \times 2+2^2 \times 3+\ldots .+100^2 \times 101}$$ is
Let three real numbers $$a, b, c$$ be in arithmetic progression and $$a+1, b, c+3$$ be in geometric progression. If $$a>10$$ and the arithmetic mean of $$a, b$$ and $$c$$ is 8, then the cube of the geometric mean of $$a, b$$ and $$c$$ is
Let the first three terms 2, p and q, with $$q \neq 2$$, of a G.P. be respectively the $$7^{\text {th }}, 8^{\text {th }}$$ and $$13^{\text {th }}$$ terms of an A.P. If the $$5^{\text {th }}$$ term of the G.P. is the $$n^{\text {th }}$$ term of the A.P., then $n$ is equal to: