If $$\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$$ are in an A.P. and $$\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c} -\log _e$$ a are also in an A.P, then $$a: b: c$$ is equal to
If each term of a geometric progression $$a_1, a_2, a_3, \ldots$$ with $$a_1=\frac{1}{8}$$ and $$a_2 \neq a_1$$, is the arithmetic mean of the next two terms and $$S_n=a_1+a_2+\ldots . .+a_n$$, then $$S_{20}-S_{18}$$ is equal to
If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to
In an A.P., the sixth term $$a_6=2$$. If the product $$a_1 a_4 a_5$$ is the greatest, then the common difference of the A.P. is equal to