This chapter is currently out of syllabus
1
JEE Main 2019 (Online) 9th January Evening Slot
+4
-1
Out of Syllabus
The logical statement

[ $$\sim$$ ( $$\sim$$ p $$\vee$$ q) $$\vee$$ (p $$\wedge$$ r)] $$\wedge$$ ($$\sim$$ q $$\wedge$$ r) is equivalent to :
A
( $$\sim$$ p $$\wedge$$ $$\sim$$ q) $$\wedge$$ r
B
$$\sim$$ p $$\vee$$ r
C
(p $$\wedge$$ r) $$\wedge$$ $$\sim$$ q
D
(p $$\wedge$$ $$\sim$$ q) $$\vee$$ r
2
JEE Main 2019 (Online) 9th January Morning Slot
+4
-1
Out of Syllabus
If the Boolean expression
(p $$\oplus$$ q) $$\wedge$$ (~ p $$\odot$$ q) is equivalent
to p $$\wedge$$ q, where $$\oplus , \odot \in \left\{ { \wedge , \vee } \right\}$$, then the
ordered pair $$\left( { \oplus , \odot } \right)$$ is :
A
$$\left( { \vee , \wedge } \right)$$
B
$$\left( { \vee , \vee } \right)$$
C
$$\left( { \wedge , \vee } \right)$$
D
$$\left( { \wedge , \wedge } \right)$$
3
JEE Main 2018 (Online) 16th April Morning Slot
+4
-1
Out of Syllabus
If p $$\to$$ ($$\sim$$ p$$\vee$$ $$\sim$$ q) is false, then the truth values of p and q are respectively :
A
F, F
B
T, F
C
F, T
D
T, T
4
JEE Main 2018 (Offline)
+4
-1
Out of Syllabus
The Boolean expression

$$\sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right)$$ is equvalent to :
A
$${ \sim q}$$
B
$${ \sim p}$$
C
p
D
q
EXAM MAP
Medical
NEET