This chapter is currently out of syllabus
1
JEE Main 2023 (Online) 1st February Evening Shift
+4
-1
Out of Syllabus

Which of the following statements is a tautology?

A
$$\mathrm{p\vee(p\wedge q)}$$
B
$$(\mathrm{p\wedge(p\to q))\to\,\sim q}$$
C
$$\mathrm{p\to (p\wedge (p\to q))}$$
D
$$(\mathrm{p\wedge q)\to(\sim (p)\to q)}$$
2
JEE Main 2023 (Online) 1st February Morning Shift
+4
-1
Out of Syllabus

The negation of the expression $$q \vee \left( {( \sim \,q) \wedge p} \right)$$ is equivalent to

A
$$( \sim \,p) \wedge ( \sim \,q)$$
B
$$( \sim \,p) \vee q$$
C
$$p \wedge ( \sim \,q)$$
D
$$( \sim \,p) \vee ( \sim \,q)$$
3
JEE Main 2023 (Online) 31st January Evening Shift
+4
-1
Out of Syllabus
The number of values of $\mathrm{r} \in\{\mathrm{p}, \mathrm{q}, \sim \mathrm{p}, \sim \mathrm{q}\}$ for which $((\mathrm{p} \wedge \mathrm{q}) \Rightarrow(\mathrm{r} \vee \mathrm{q})) \wedge((\mathrm{p} \wedge \mathrm{r}) \Rightarrow \mathrm{q})$ is a tautology, is :
A
2
B
1
C
4
D
3
4
JEE Main 2023 (Online) 31st January Morning Shift
+4
-1
Out of Syllabus

$$(\mathrm{S} 1)~(p \Rightarrow q) \vee(p \wedge(\sim q))$$ is a tautology

$$(\mathrm{S} 2)~((\sim p) \Rightarrow(\sim q)) \wedge((\sim p) \vee q)$$ is a contradiction.

Then

A
only (S2) is correct
B
both (S1) and (S2) are correct
C
only (S1) is correct
D
both (S1) and (S2) are wrong
EXAM MAP
Medical
NEET