Consider the following statements:
P : I have fever
Q: I will not take medicine
$\mathrm{R}$ : I will take rest.
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to :
Among the statements :
$$(\mathrm{S} 1)~((\mathrm{p} \vee \mathrm{q}) \Rightarrow \mathrm{r}) \Leftrightarrow(\mathrm{p} \Rightarrow \mathrm{r})$$
$$(\mathrm{S} 2)~((\mathrm{p} \vee \mathrm{q}) \Rightarrow \mathrm{r}) \Leftrightarrow((\mathrm{p} \Rightarrow \mathrm{r}) \vee(\mathrm{q} \Rightarrow \mathrm{r}))$$
If $$p,q$$ and $$r$$ are three propositions, then which of the following combination of truth values of $$p,q$$ and $$r$$ makes the logical expression $$\left\{ {(p \vee q) \wedge \left( {( \sim p) \vee r} \right)} \right\} \to \left( {( \sim q) \vee r} \right)$$ false?
Let $$\Delta ,\nabla \in \{ \wedge , \vee \} $$ be such that $$\mathrm{(p \to q)\Delta (p\nabla q)}$$ is a tautology. Then