This chapter is currently out of syllabus
1
JEE Main 2016 (Offline)
+4
-1
Out of Syllabus
The Boolean expression

$$\left( {p \wedge \sim q} \right) \vee q \vee \left( { \sim p \wedge q} \right)$$ is equivalent to :
A
$${ \sim p \wedge q}$$
B
$${p \wedge q}$$
C
$$p \vee q$$
D
$$p \vee \sim q$$
2
JEE Main 2015 (Offline)
+4
-1
Out of Syllabus
The negation of $$\sim s \vee \left( { \sim r \wedge s} \right)$$ is equivalent to :
A
$$s \vee \left( {r \vee \sim s} \right)$$
B
$$s \wedge r$$
C
$$s \wedge \sim r$$
D
$$s \wedge \left( {r \wedge \sim s} \right)$$
3
JEE Main 2014 (Offline)
+4
-1
Out of Syllabus
The statement $$\sim \left( {p \leftrightarrow \sim q} \right)$$ is :
A
equivalent to $${ \sim p \leftrightarrow q}$$
B
a tautology
C
a fallacy
D
equivalent to $${p \leftrightarrow q}$$
4
JEE Main 2013 (Offline)
+4
-1
Out of Syllabus
Consider :
Statement − I : $$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$$ is a fallacy.
Statement − II :$$\left( {p \to q} \right) \leftrightarrow \left( { \sim q \to \sim p} \right)$$ is a tautology.
A
Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I
B
Statement -I is True; Statement -II is False.
C
Statement -I is False; Statement -II is True
D
Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I
EXAM MAP
Medical
NEET