This chapter is currently out of syllabus
1
JEE Main 2023 (Online) 10th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus

The negation of the statement $$(p \vee q) \wedge (q \vee ( \sim r))$$ is :

A
$$(( \sim p) \vee r)) \wedge ( \sim q)$$
B
$$(p \vee r) \wedge ( \sim q)$$
C
$$(( \sim p) \vee ( \sim q)) \vee ( \sim r)$$
D
$$(( \sim p) \vee ( \sim q)) \wedge ( \sim r)$$
2
JEE Main 2023 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus

The negation of $$(p \wedge(\sim q)) \vee(\sim p)$$ is equivalent to :

A
$$p \wedge q$$
B
$$p \wedge(\sim q)$$
C
$$p \wedge(q \wedge(\sim p))$$
D
$$p \vee(q \vee(\sim p))$$
3
JEE Main 2023 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus

Negation of $$(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$$ is :

A
$$(\sim q) \wedge p$$
B
$$q \wedge(\sim p)$$
C
$$p \vee(\sim q)$$
D
$$(\sim p) \vee q$$
4
JEE Main 2023 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus

Among the statements

(S1) : $$(p \Rightarrow q) \vee((\sim p) \wedge q)$$ is a tautology

(S2) : $$(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$$ is a contradiction

A
neither (S1) and (S2) is True
B
only (S2) is True
C
both $$(\mathrm{S} 1)$$ and $$(\mathrm{S} 2)$$ are True
D
only (S1) is True
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12
© ExamGOAL 2024